O.P.Code: 20CE0104

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech II Year I Semester Regular & Supplementary Examinations December-2023 SURVEYING & GEOMATICS

(Common to CE & AGE)

Time: 3 Hours

Max. Marks: 60

(Answer all Five Units $5 \times 12 = 60$ Marks)

UNIT-I

a What are the different tape corrections and how are they applied?
b Explain the different methods of chaining on sloping ground. What is a CO1 L2 6M hypotenusal allowance?

OR

a What is local attraction? How is it detected and eliminated?
 b The following bearings were observed in running a closed traverse. At CO1 L3 6M

what stations do you suspect local attraction? Find the correct bearings of lines and compute the included angles.

LINE	FORE BEARING	BACK BEARING	
AB	71°05'	250°20'	
BC	110°20'	292°35'	
CD	161°40'	341°40'	
DE	220°50'	40°05'	
EA 300°50'		121°10'	

UNIT-II

a Describe in detail how you will proceed in the field of profile levelling.
b In levelling between two points A and B on opposite sides of a river, the level was set up near A and the staff readings on A and B were 2.642m and 3.228m respectively. The level was then moved and set up near B, the respective staff readings on A and B was 1.086m and 1.664m. Find

the true difference level of A and B.

OR

4	a	What is grade contour? How will you locate it	CO2	L1	6M
		(i) on the ground (ii) on the map?			
	b	Discuss various methods of interpolating the contours.	CO2	L2	6 M

UNIT-III

Explain with a neat sketch, about the parts of a transit theodolite.

CO₃ L2

L3

12**M**

12M

The following readings were taken by a tacheometer with the staff held CO3 6 vertically. The tacheometer is fitted with an Analytic lens and the multiplying constant is 100. Find out the horizontal distance from A to B and the R.L of B.

Inst.	Staff	Vertical Staff readings		Remarks
station	station	angle		
A	BM	-6°00'	1.100, 1.580, 2.	R.L. of
			060	B.M
	В	8°00'.	0.982, 1.085,	= 976.000
			1.188	

UNIT-IV

Define and draw a typical compound curve. Under what circumstance CO4 L1 **5M** compound.

Derive the expression for the elements of a compound curve.

CO4 L3 **7M**

L4

12M

6M

6M

OR

Two tangents intersect at chainage 1350 m. The angle of intersection is 1600. **CO4** Calculate all data necessary for setting out a curve of radius 250 m by the deflection angle method. The peg intervals may be taken as 20 m. Prepare a setting out table when the least count of the Vernier is 20". Calculate the data for field checking.

UNIT-V

Explain in detail about the infrared type of EDM instrument. 9

CO₅ L2

Write short notes on total stations.

CO₅ L1

OR

10 How will you measure the horizontal angle and vertical angle by using total CO5 12M L2 station?

*** END ***